РАЗГОВОРЫ
ЗА ЖИЗНЬ
Альберт Ризванов
По пути развития регенеративной медицины
и ветеринарии
РАЗГОВОРЫ
ЗА ЖИЗНЬ
Альберт Ризванов
По пути развития регенеративной медицины
и ветеринарии
  • Разговор
    о том, что же такое регенеративная медицина, что общего между стволовыми и раковыми клетками и почему традиционная фарма сдает позиции генной терапии
  • Герой
    Альберт Ризванов, руководитель центра превосходства «Персонифицированная медицина» Института фундаментальной медицины и биологии, заведующий лабораторией OpenLab «Генные и клеточные технологии» Казанского федерального университета (КФУ)
  • Собеседник
    Ольга Фадеева, журналист
  • Беседовали
    в январе 2022 г.
— Многие слышали о регенеративной медицине, но, возможно, не очень хорошо понимают, о чём на самом деле идет речь. Поэтому начнем с терминов — каков принцип регенеративной терапии?
— Тогда лучше начать с самого известного термина — «стволовые клетки». Его зачастую применяют как общий для любой клеточной терапии. Стволовые клетки — это неспециализированные клетки в организме, которые, как солдаты запаса, в случае необходимости активируются, мобилизуются и принимают участие в заживлении каких-то травм. А в норме они всегда участвуют в естественной регенерации организма, ведь наше тело постоянно стареет, и клетки нуждаются в обновлении. Стволовые клетки как раз отвечают за естественные процессы роста и обновления. В медицине их применяют по нескольким направлениям.
Главное — это регенеративная медицина. В отличие от ящериц, мы не можем отрастить себе новый хвост, но в теории, если ввести стволовые клетки в место травмы, мы получим дополнительное ускорение к регенерации. Это и есть основная концепция регенеративной медицины. Еще у стволовых клеток есть способность мигрировать в очаги проблемы, потому что, по сути, это ремонтная бригада. В очагах травм или других дегенеративных процессов выделяются специальные биомолекулы, которые подают «сигнал» стволовым клеткам. Они принимают сигнал, «чувствуют» эти биомолекулы и идут направленно туда «на запах».
Поэтому их можно использовать как для системного лечения, так и для адресной доставки лекарственных препаратов, химических или генно-терапевтических. В последнем случае мы можем снижать системное воздействие, повысив концентрацию только там, где нужно, и усилив таким образом лечебный потенциал.

— Как такую терапию применяют в лечении рака? Что уже находится на стадии разработки, а что пока существует только в теории?
— Самая продвинутая на сегодняшний день терапия — противоопухолевая. Но речь здесь не совсем о стволовых клетках, а о генетически модифицированных Т-лимфоцитах. Это так называемая CAR-T-терапия, когда в клетки иммунной системы — T-лимфоциты — с помощью генетической модификации вносится химерный рецептор, который узнаёт молекулу, встречающуюся на поверхности опухолевых клеток.
Так мы можем «перепрошить» любую Т-клетку, чтобы она уничтожала опухолевые. Получается, мы взламываем ее систему опознавания «свой-чужой». И это достаточно эффективная терапия для некоторых видов онкопатологии, в первую очередь опухолей кроветворной системы, например В-клеточной лимфомы. Сегодня эту технологию активно пытаются адаптировать под другие типы опухолей.
Есть и другие подобные технологии: например, метод дендритных вакцин. Его принцип можно сравнить с дрессировкой собаки, которой дают понюхать кусок одежды преступника, и она находит его по запаху. Так и дендритные клетки сначала обучают на примере выделенных антигенов опухоли, после чего вводят их в организм, и они начинают атаковать опухолевые клетки, распознавая их антигены.
Существует также заместительная терапия, когда индуцированные плюрипотентные стволовые клетки (iPS-клетки) с помощью дифференцировки превращают в нужные клетки и вводят в организм для лечения того или иного заболевания, например, сетчатки глаза или спинного мозга.
Еще одно применение стволовых клеток — косметология: если ввести стволовые клетки в кожу, улучшается выработка коллагена, васкуляризация кожи, то есть они в целом оказывают омолаживающий эффект. Их используют при реконструктивной хирургии, в процедуре липофилинга, когда жир выкачивают из одной зоны в другую, чтобы придать объем; со временем этот жир рассасывается, а если ввести туда стволовые клетки — сохраняется гораздо лучше.
— Это и есть, кажется, самое нашумевшее направление использования стволовых клеток, о котором в СМИ очень много противоречивой информации...
— Опасения вызывает возможность превращения стволовых клеток в опухолевые, ведь первые, подобно вторым, могут делиться много раз. Есть теория, что в основе зарождения опухоли лежит как раз генетический сбой в работе какой-то стволовой клетки, которая начинает бесконтрольно делиться. Доказано существование и так называемых стволовых опухолевых клеток. Эти клетки отвечают за метастазирование и устойчивость, резистентность к противоопухолевой терапии. Поэтому основной страх — это то, что стволовая клетка может «сломаться» и превратиться в опухолевую.
Эти опасения были связаны в первую очередь с применением низкодифференцированных, то есть очень-очень молодых, стволовых клеток, таких как эмбриональные или индуцированные плюрипотентные. На заре клеточной терапии даже рассматривали применение фетальных стволовых клеток, получаемых из живых эмбрионов.
И действительно, в этих экспериментах иногда развивались тератомы — доброкачественные опухоли, когда клетка начинает делиться, превращаясь в месте введения буквально во всё подряд: в зубы, волосы и другие ткани организма. Поэтому низкодифференцированные клетки в чистом виде сегодня уже никто не применяет. В дело идут лишь дифференцированные и предифференцированные, то есть такие, которые уже начали движение к тому, чтобы стать теми или иными типами клеток. Вероятность трансформации в опухоль у них чрезвычайно низка. Поэтому такая терапия с онкологической точки зрения может считаться безопасной.
Фотограф: Тимур Сабиров /
для "Разговоров за жизнь"
— Изменилось ли направление ваших исследований в связи с пандемией коронавируса?
— Когда я работал в США, мы занимались вирусами, которые вызывают геморрагические лихорадки. После возвращения в Россию наша группа продолжила эти исследования. Поэтому к началу пандемии у нас был огромный опыт работы с инфекционными заболеваниями, и уже в феврале 2020 года у меня на руках был прототип вакцины против коронавируса. Но, увы, мы так и не смогли найти индустриального партнера, который бы заинтересовался ее внедрением. Тем не менее мы применили наш опыт разработки иммунологических тестов и уже весной 2020 года разработали иммуноферментный анализ (ИФА) на антитела к SARSCoV2, с помощью которого тестировали образцы для банка плазмы переболевших в Республике Татарстан.
Первых российских пациентов, зараженных коронавирусом, привезли в Казань, и некоторые из них как раз стали донорами-пионерами антиковидной плазмы — той самой, что содержит антитела против SARS-CoV-2. Переливание ее больным пациентам могло улучшить течение заболевания. Так наши разработки по другим вирусным заболеваниям пригодились и для очень оперативного ответа на новую пандемию.
Мы также занялись изучением биомаркеров воспалительного ответа, то есть цитокинового шторма, чтобы понять эффективность антицитокиновой терапии, переливания плазмы, а также применения иммуноглобулинов. Кроме того, мы исследовали, какие маркеры могли бы указывать на неблагоприятное течение заболевания или на необходимость проведения той или иной терапии. Ведь часто лечение подбирается методом «научного тыка», эмпирически, что несет в себе большие риски для пациента: пока подберут нужный вид терапии, может быть уже слишком поздно.
Мы ведем исследования и по эффективности вакцин. Осенью 2021 года, например, опубликовали работу по эффективности вакцины «Спутник V» и показали, что после прививки этим препаратом действительно формируется очень хороший иммунитет — как гуморальный, так и Т-клеточный. Иммунитет остается высоким в течение 7 месяцев после вакцинации. Сейчас мы продолжаем исследовать его уровень уже на более длительном периоде, а также эффективность ревакцинации.

— Клеточная терапия и родственные ей методы, кажется, вытесняют из медицины традиционные лекарства — молекулы, которые синтезируют химики в лабораториях (или выделяют из живых организмов). Почему это происходит?
— Вернемся немножко в историю разработки лекарств. Первоначально считалось, что простым скринингом больших библиотек химических соединений можно «в лоб» решить вопрос поиска новых лекарственных препаратов. Но, увы, этого не произошло, и именно это сейчас лежит в основе кризиса в фарминдустрии. Ведь, чтобы фармкомпании процветали, им постоянно нужны новые лекарства — эффективные, продаваемые, так называемые блокбастеры. А сегодня найти их всё сложнее.
Молекулярный докинг, то есть рациональный дизайн фармпрепарата, помогает отчасти решить вопросы фармакологии, перенося скрининг в вычислительную плоскость или создавая новые химические соединения под определенные мишени с помощью алгоритмов искусственного интеллекта. Проблема в том, что не всегда найденные соединения обладают высокой избирательностью, поэтому у них бывают тяжелые побочные эффекты: грубо говоря, мы можем лечить мигрень отсечением головы. В связи с этим сегодня ренессанс претерпевает генная терапия, когда можно «зайти» в клетку и исправить генетический дефект либо перепрограммировать клетку на то, чтобы она вела более «здоровый образ жизни». Но и здесь есть огромные сложности, потому что в пробирке можно вылечить что угодно, но как вылечить организм — большой вопрос.
Правда, здесь внедрение науки в практику ускорила пандемия. Почти все сегодняшние вакцины против SARS-CoV-2 — это, по сути, и есть генная терапия. Вакцины, такие как «Спутник V», доставляют генетическую информацию вируса в виде кДНК в клетки организма, заставляя их производить вирусный антиген для запуска иммунного ответа. Можно доставить информацию о вирусном антигене в клетку и напрямую, с помощью матричной РНК. Получается, что почти все люди на планете получат генную терапию, просто фармкомпании не заостряют внимание на этом, чтобы не пугать население.
Ученые, впрочем, видят, что это безопасно и эффективно и что такой тип платформы можно использовать для создания других лекарств. Более того, если раньше разработка препаратов занимала многие годы, то сейчас внезапно выяснилось, что если очень хочется и есть политическая воля, то можно создать лекарство буквально за пару месяцев и за полгода провести его испытания. Поэтому пандемия ускорила процесс разработки новых лекарственных препаратов, в первую очередь генных.
Генная терапия — одно из основных направлений нашей работы для лечения редких наследственных, так называемых орфанных, заболеваний. Мы применяем вышеупомянутые новые тенденции для разработки лекарственных препаратов конвейерным способом и можем одновременно разрабатывать десятки лекарств, тем самым существенно снизив себестоимость каждого конкретного и сделав его более доступным для пациентов.

— А если посмотреть на чуть более далекое будущее вашей работы, что там самое перспективное?
— Есть так называемая мультиомиксная медицина, когда анализ заболевания делается не по одному или нескольким параметрам, а сразу составляется его расширенный «портрет» — белковый, геномный, протеомный, метаболомный, транскриптомный и т. д. Получается, что мы, по сути, создаем цифровую модель человека, причем не статическую, а динамическую. Это полезно для ранней диагностики заболеваний, потому что даже небольшие изменения, которые мы наблюдаем, могут свидетельствовать о развитии патологии, хотя параметры остаются всё еще в пределах нормы. Не говоря уже о том, что норма для каждого своя, что позволяет подбирать для пациентов индивидуальную терапию. Плюс к этому мы работаем с различными носимыми устройствами — датчиками и гаджетами, которые регистрируют состояние пациента.

— Когда ждать массового внедрения таких технологий?
— Диагностику, например, мы уже предлагаем нашим пациентам в Научно-клиническом центре прецизионной и регенеративной медицины при институте фундаментальной медицины и биологии Казанского федерального университета. Проблема массового применения — это, возвращаясь к началу нашего разговора, во-первых, стоимость, а во-вторых, законодательство.
Фотограф: Тимур Сабиров /
для "Разговоров за жизнь"
— Если оглянуться назад, какими своими разработками вы больше всего гордитесь?
— У нас очень интересные работы в области регенеративной медицины, а именно травм периферических нервов, спинного мозга. Мы занимаемся, например, двигательной реабилитацией пациента, разрабатывая технологии нейрорегенерации, которые повышают восстановление нервной системы.
Именно сейчас удалось заинтересовать большой бизнес в финансировании проектов по генной терапии наследственных орфанных заболеваний. И мы надеемся, что этот год будет для нас переломным и мы наконец поставим подобные проекты на рельсы внедрения — доведения препарата до лицензирования и клинического применения.
— А какие из ваших проектов — самые необычные?
— Интересных проектов очень много. Можно выделить регенеративную ветеринарию, где мы разрабатываем видоспецифичные лекарственные препараты для лечения животных, например спортивных лошадей. Теоретически мы можем проводить терапию и редких животных в зоопарках.
Еще один уникальный проект — разработка искусственных микровезикул (синтетических микроконтейнеров. — Прим. ред.) для регенеративной медицины и в качестве носителя для создания вакцинных препаратов. Суть в том, что мы создаем биоподобные микровезикулы из клеток человека и животных. И в отличие от естественных микровезикул, чей выход очень маленький («чайная ложка на ведро клеток»), соответственно, их крайне сложно применять в биотехнологических производствах — наши подходы позволяют на порядки увеличить выход таких микровезикул, а также запрограммировать их свойства.
Препараты на основе этого подхода могли бы в будущем развиться в новую отрасль биотехнологии. В целом самые интересные исследования сейчас проходят на стыке наук. Поэтому, когда биологи и медики работают в отрыве друг от друга, ничего хорошего обычно не выходит. Но если они объединяют усилия, а еще привлекают химиков, физиков, айтишников, то проекты становятся прорывными и конкурентоспособными.
— Подводя итог: регенеративная медицина и лечение с помощью стволовых клеток — это уже практическая отрасль или, как, например, омиксная биология, скорее пока фундаментальная наука?
— В лаборатории всё уже давно и замечательно работает. Но донести продукт до потребителей пока сложно. Основные проблемы — стоимость, логистика и вопросы сертификации. Сделать препарат, который подойдет для всех, довольно непросто. Если взять так называемые аллогенные (донорские. — Прим. авт.) клетки у какого-то человека, размножить и применять для лечения других людей, снимается проблема их получения и наработки в больших количествах, но встает вопрос иммунологической совместимости такого препарата у других людей.
Наиболее распространенная технология сегодня — это работа с мезенхимными стволовыми клетками. Они обладают меньшей иммуногенностью, чем, скажем, гемопоэтические стволовые клетки, поэтому подбора пары донор — реципиент можно избежать. Но существуют вопросы транспортировки, подготовки, введения. Стволовые клетки, как и любые другие, транспортируются при сверхнизких температурах, максимум при –70 градусах по Цельсию.
Можно подойти к делу с точки зрения аутологичной трансплантации, когда у человека берут материал, выращивают из него стволовые клетки и применяют для лечения конкретно этого пациента. Но медицинские центры, в стенах которых происходит такое лечение, должны обладать наукоемкими лабораториями и квалифицированным персоналом. Отсюда — высокая цена на подобную терапию. А еще это нередко неинтересно фармкомпаниям, потому что аутологичное применение — больше способ лечения, чем собственно лекарственный препарат. Они же хотят построить большой завод, произвести что-то единообразное и потом продавать это.
И сверх того встает юридическая проблема: если это лекарство, то как его тестировать? Ведь вечный источник клеток невозможен, соответственно, каждая партия — это немножко другой препарат. А если он аутологичный — как провести доклинические и клинические испытания этого единичного лекарства? Если же говорить о редких (орфанных) заболеваниях, когда пациент гарантированно умрет без лечения, то у нас нет законодательной базы, которая позволяла бы тестировать лекарственные препараты на нём в рамках индивидуальных клинических исследований.
За рубежом такая экспериментальная терапия есть, потому что альтернатива — смерть пациента, причем иногда страшная — и для него самого, и для окружающих. Наше здравоохранение пока не готово к такому, действуя по принципу «Бог дал — Бог взял», так как боится ошибиться. На мой взгляд, к этому вопросу нужно подходить индивидуально, давая шанс и неизлечимо больному человеку, и медицине в целом.
Интервью впервые опубликовано на портале «Биомолекула» 07.10.2022
Made on
Tilda